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ANALYTICAL, NUMERICAL AND EXPERIMENTAL

INVESTIGATION OF NON-STATIONARY STATE OF STRESS IN

A THIN VISCOELASTIC PLATE

V́ıtĕzslav ADÁMEK 1, Frantĭsek VALES̆ 2

Abstract: Presented work deals with solution of non-stationary state of stress in
a thin viscoelastic plate. The first section is focused on analytical and numerical
solution of the problem of transverse non-stationary loaded viscoelastic plate. The
analytical solution stated was derived using the theory of thin plates with so called
Timoshenko-Mindlin correction and it serves for the validation of numerical model.
Afterwards, the real problem of the impact of small glass ball on the surface of
a thin viscoelastic plate is solved in the second section. Concretely, numerical
and experimental results are presented and discussed. Their comparison showed
the necessity of material model parameters modification. This step led to better
compliance between numerical and experimental results.
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1. INTRODUCTION

The reason for the choice of the topic of this work is the fact that conventional materials
are very often substituted by new modern materials that often exhibit viscoelastic behaviour
(dissipation of energy). We meet bodies with these properties not only in industrial applica-
tions, but also in daily life and in many different forms (e.g. plastics, human tissue, wood,
etc.). Plastics, especially polymers, represent the greatest set of such materials. They are
usually utilized in industry directly or in the form of composite matrices whereby they signifi-
cantly influence composites behaviour. With respect to their specific mechanical properties,
viscoelastic materials are often used in structures subjected to dynamic loading with stationary
or non-stationary character (e.g. impacts). Therefore it is important to be able to describe
and predict the state of stress in components under such working conditions.

This work concerns non-stationary phenomena in viscoelastic solids. This part of continuum
mechanics is studied by many authors already since the beginning of the 20th century. Detailed
overview of works that concerned dynamical properties and wave phenomena in viscoelastic
materials and that were published until the 60s of the 20th century gave Kolsky (1958). In his
work one can find mentions of solutions of stress waves propagation in 1D and 3D continuum
with both linear and non-linear viscoelastic properties of such authors as Havelock, Lee, Kanter,
Morrison, Kolsky, Charles, Davies, O’neill, etc. From the large number of works that appeared
at a later time one can mention the work Zhao and Gary (1995) where the authors generalized
the solution of longitudinal waves propagation in a thick elastic bars derived by Pochhammer
in 1876 and Chree in 1889 to viscoelastic problems. All mentioned authors deals with wave
problems mainly from analytical or experimental point of view.
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Nowadays, when computer equipment and numerical methods are at high level, most of real
problems that are more complicated than the theoretical ones are solved numerically. Many
works that deal with numerical solutions of waves propagation in viscoelastic solids and their
application in transportation engineering, medicine and geomechanics can be found. The finite
difference method, the Lax-Wendroff scheme or FEM are usually used for space discretization
in such cases. When the non-stationary wave problems are solved numerically, one has to pay
attention if the method used is able to involve sharp fronts of waves propagated. In the case
of FEM, the mostly used method, this fact is related to so called limit frequency of FE model.
It means that waves containing frequencies higher than this value are not represented by the
FE model correctly and they are distorted.

2. PROBLEM OF TRANSVERSE NON-STATIONARY LOADED PLATE

This section concerns analytical and numerical solution of non-stationary state of stress in an
infinite thin plate of thickness h that is transverse loaded by uniformly distributed pressure on
its upper face. The loading applied has nonzero constant amplitude σ0 only in the circular area
with finite radius R and it changes according to the Heaviside function in time. With respect
to the axial symmetry of applied loading and to infinity of the plate, the problem is solved as
axisymmetric one and cylindrical coordinates are used. The material of the plate is assumed
to be homogenous linear viscoelastic and it is represented by standard linear viscoelastic solid
(Zener model). Volume changes are not taken into account, the material is assumed incom-
pressible, so its behaviour is represented only by relaxation function of shear modulus in the
form G(t) = G0 + G1e

−
t

tε , where G0 and G1 represent the shear modulus of alone standing
spring and the spring with dashpot in series, respectively. Time tε is the relaxation time of the
branch with dashpot.

2.1 Analytical solution

The presented analytical solution was completely derived in Adámek (2004). Since time history
plots and path plots of radial strain component εr will be observed in this work, corresponding
analytical expression will be only stated. As mentioned above, the theory of thin plates was used
for the derivation of motion equations. To achieve better compliance with three dimensional
theory of continuum, so called Timoshenko-Mindlin correction was used. It means that the
effect of shear and the rotary inertia of an element are taken into account as well. The resulted
system of two dependent partial-integrodifferential equations of the second order was solved
by Hankel and Laplace integral transformations. Under the assumption of zero boundary and
initial conditions, the function describing spatio-temporal distribution of strain component εr

can be written in the form

εr(r, t) = σ0Rz
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where t is time, p ∈ C is variable of Laplace transformation, γ ∈ R is variable of Hankel
transformation, r and z correspond to radial distance from the axis of symmetry and transverse
distance from the middle surface of the plate, respectively. Functions J0 and J1 represent
the Bessel’s functions of the first kind and the zeroth and the first order. The complex
polynomials P2(γ, p) and P6(γ, p) of the second and the sixth order involve material and
geometric characteristics of the problem solved and their exact form can be found in Adámek
(2004). The sum in (1) implies from the Cauchy theorem and the theorem of residue and
it substitutes the integral of inverse Laplace transformation. The analytical solution (1) was
then evaluated using numerical and symbolical functions of system Matlab and Maple. The
Simpson’s rule was used for the evaluation of the integral of inverse Hankel transformation.
Examples of resulted time history plots and path plots of radial strain component εr are
presented in section 2.3.
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2.2 Numerical solution

Numerical simulation of the problem solved was performed in FE software MSC.MARC/Mentat.
This system supports solution of axisymmetric problems such that whole geometry of nume-
rical model consisted of one half of transverse cross-section of the plate. It led to significant
reduction of CPU time and RAM requierements. Finite radius 75 mm of the plate and its
thickness 2 mm were chosen for numerical simulation. The regular FE mesh of the model con-
sisted of quadrangular 4-noded isoparametric elements with linear base functions. Their basic
size was chosen 0.5 × 0.5 mm. This mesh was twice refined in direction to applied loading.
The first refinement was realized at radius 40 mm, the second one at radius 35 mm, i.e. the
elements had size 0.125× 0.125 mm round about the external pressure where the results were
observed.

Total time of numerical simulation 5 · 10−5 s was divided into 4000 increments, i.e. time
interval 1.25 · 10−8 s corresponded to one integration step. The size of integration step was
chosen according to the size of the smallest element and to the phase velocity of waves
propagated. Newmark algorithm was used for integration in time domain. Boundary conditions
of the model were defined so, that they represented the clamped circumference of the plate
and the uniformly distributed pressure loading. The pressure was applied to the elements inside
the circle with radius 1 mm on the upper plate surface and its amplitude changes from 0 MPa
to 50 MPa according to the Heaviside time step function.

2.3 Results comparison

Analytical solution (1) was evaluated for geometry and external loading specified in previous
subsection. Material parameters of the plate were chosen for both analytical and numerical
solutions as follows: G0 = 1.2869 · 109 Pa, G1 = 2.82786 · 108 Pa, tε = 3.68932 · 10−5 s,
ρ = 1140 kgm−3, µ = 0.4. These values were used in Bussac et al. (2002) where the authors
investigated waves propagation in nylon bars.

Comparison of results obtained is performed in fig. 1 and in fig. 2 where time history
plots of εr for r = 5 mm and r = 15 mm and the distribution of εr along plate radius at
time t = 10−5 s and t = 33 · 10−6 s are depicted, respectively. Thinner lines correspond to
numerical solution and thicker ones to analytical results. It is clear from these figures that the
analytical solution implicit in the approximate theory of thin plates and the numerical solution
implicit in three dimensional theory are in good concordance. Naturally, the compliance is
better at longer time and for larger distances from excitation because the high-frequency
components of the waves are already damped due to their higher attenuation coefficient than
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(a) History plot of εr for r = 5 mm.
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(b) History plot of εr for r = 15 mm.

Fig. 1. Comparison of results obtained - history plots of εr.
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(a) Path plot of εr at t = 10
−5 s.
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(b) Path plot of εr at t = 33 · 10−6 s.

Fig. 2. Comparison of results obtained - path plots of εr.

in the case of low-frequency components (for more detail see Adámek (2004)). Based on
presented results one can say that the parameters of numerical model (elements size, base
functions, integration step, etc.) were chosen correctly and the model created can be used
for simulation of similar non-stationary wave phenomena in solids. With respect to the fact
that the proportional representation of high-frequency components in the Fourier spectrum
of contact force is smaller than in the case of excitation in the form of Heaviside function,
the model parameters can be used in the following section where numerical and experimental
investigation of non-stationary state of stress in a thin viscoelastic plate caused by the impact
of ball on its surface is presented.

3. PROBLEM OF TRANSVERSE IMPACT ON PLATE

As mentioned above, the contact impact problem will be solved in this section. Concretely,
the real problem of the impact of a small glass ball with diameter 5 mm perpendicularly to
the plate surface will be numerically and experimentally investigated. The plate specimen of
size 150 × 150 mm was made from polyamide 6 (nylon 6) that is produced with trade name
Tecamid 6 by Ensinger company. This material was chosen for its significant viscoelastic
properties and for its wide utilization in most branches of engineering industry. It has good
sliding properties, good chemical resistance, it is very abrasion resistant, very tough, rigid,
electrically insulating and easily machined and that is why it is used for the producing of gear
wheels, friction strips, piston guides, impact and damping plates, friction bearings, conveyor
screws, etc.

3.1 Numerical solution

The problem was solved again as axisymmetric one. The model from subsection 2.2 was the
base for numerical model of this problem. The geometry and the mesh of the plate were
retained, only boundary condition representing external loading was substituted by contact
body in the form of one half of cross-section of impacting ball with radius specified. With
respect to the fact that the wave phenomena were explored in the plate, the mesh of the ball
contained quadrangular elements with approximate edge length 0.25 mm, i.e. roughly twice
greater than the mesh of the plate in area of interest.

Parameters of material model representing viscoelastic properties of the thin plate were
identical to them used in previous section. Material properties of the glass ball were modeled
as elastic with Young modulus E = 7.5 · 1010 Pa, density ρ = 2580 kgm−3, Poisson’s ratio
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µ = 0.16. Total time of the analysis 10−4 s was divided into 8000 identical steps so time
1.25 · 10−8 s corresponded to one integration step of Newmark method.

3.2 Experiment

The external company Lenam, s.r.o. from Liberec that has the equipment necessary for
experimental investigation of non-stationary phenomena in solids was asked for realization
of experiment. Authors’s workplaces have long-standing cooperation with workers of this
company who are experts in this branch.

The air cannon that is able to shoot balls with diameter 5 mm with predefined velocity
was used for the realization of impact. The plate polyamide specimen was fixed against this
cannon by a gripper and four strain gauges were glued to its surface. These semiconductor
strain gauges of type AP120-1.5-12 with length 1 mm and resistance 120 Ω were glued 10 mm,
15 mm, 20 mm and 35 mm far from the point of ball impact in radial direction to be able to
measure radial strain component εr. Further, the laboratory power supply TSZ 75 and the
four-channel oscilloscope TDS 2014 Tektronix with sampling rate 10 MHz were used. Actual
arrangement of experimental equipment is depicted in fig. 3.

Fig. 3. Arrangement of experimental equipment.

3.3 Results and their comparison

The first experiment that was three times repeated to ensure its credibility was performed for
the impact velocity 40 ms−1. With respect to the fact that exact regulating of ball velocity
is not possible in the case of air cannon, actual velocities were 39.7 ms−1, 40.3 ms−1 and
43.5 ms−1. The signals from strain gauges were recorded for 6 · 10−4 s. After realization of
corresponding numerical simulations and after comparison of numerical and experimental re-
sults within time intervals in which the influence of different boundary conditions in experiment
and numerical model did not approved, significant deviations of numerical and experimental
results were observed. These deviations persisted after the averaging of numerical results over
the length of strain gauge as well. Mentioned deviations are presented in fig. 4 where nume-
rical (curves fem) and experimental (curves exp.) results for impact velocity 39.7 ms−1 are
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(a) History plots of εr for r = {10, 15}mm.
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(b) History plots of εr for r = {20, 30}mm.

Fig. 4. Comparison of numerical and experimental results for impact velocity 39.7 ms−1.

depicted. Notations T1, T2, T3 and T4 subsequently correspond to strain gauges mounted
10 mm, 15 mm, 20 mm and 35 mm far from impact point. It is obvious from results stated
that the amplitudes of numerically determined radial strain are more than twice greater than
corresponding experimental ones. The time shift of both results is also evident, but it is the
consequence of impossible exact setting of time t = 0 s on experimental equipment.

The existence of plastic deformations at impact point and its surroundings that can be the
cause of energy dissipation and sequential decrease of wave amplitudes was firstly designated
as the reason of problems mentioned. Additional experiments with lower impact velocity
were performed to prove this hypothesis, concretely nine experiments with impact velocities
{13.35, 11.16, 11.43, 19.4, 20.83, 20.96, 29.5, 30.9, 30.4}ms−1 were executed. Since the strain
gauge T4 was damaged during the experiment with impact velocity 43.5 ms−1, only strain
gauges T1, T2 and T3 were used. The comparison of new results obtained showed that
the decrease of impact velocity did not lead to significant reduction of deviations between
numerical and experimental results.

Based on such continuing problems, correctness of material model parameters used was
revalued. As mentioned in subsection 2.3, the parameters were used in Bussac et al. (2002)
for investigation of non-stationary waves in nylon bars. When we take into consideration that
the set of polymers called nylon is very extensive, it is possible that the material parameters of
standard viscoelastic solid are different for Tecamid 6. Since the values of model parameters
required were not found for this material in available literature, the analysis of influence of
each material parameter on numerical results of radial strain εr was performed to find their
approximate values. The set of material parameters that can be varied reduces to coefficient of
viscosity η and Young moduli E0 and E1 of alone standing spring and the spring with dashpot
in series in the model of viscoelastic standard solid, respectively. Remaining parameters such
as density and Poisson’s ratio are determined by manufacturer of Tecamid 6. Starting values of
searched parameters were chosen according to Bussac et al. (2002), i.e. E0 = 3.6032 · 109 Pa,
E1 = 7.918 · 108 Pa and η = 29212 Pas−1.

More than 60 numerical simulations for different values of η, E0 and E1 were performed to
approach experimentally determined results. After the analysis of numerical results obtained,
the approximate values of required parameters were found and they are: E0 = 2.7 · 109 Pa,
E1 = 5 · 109 Pa and η = 20000 Pas−1. Applicability of these parameters for modelling of
Tecamid 6 can be examined from following fig. 5 where comparison of numerical and experi-
mental results for impact velocities 13.35 ms−1, 19.4 ms−1 and 29.5 ms−1 for origin values of
parameters and for new ones is stated. It is evident from fig. 5(a) - 5(f) that new material pa-
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(a) Impact velocity 13.35 ms−1 - original model.
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(b) Impact velocity 13.35 ms−1 - new model.
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(c) Impact velocity 19.4 ms−1 - original model.
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(d) Impact velocity 19.4 ms−1 - new model.
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(e) Impact velocity 29.5 ms−1 - original model.
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(f) Impact velocity 29.5 ms−1 - new model.

Fig. 5. Comparison of results before modification of material parameters and after it.

rameters significantly improve correspondence between numerical and experimental results for
impact velocity approximately up to 30 ms−1. For the velocities about 40 ms−1 the numerical
results still very differ from experimental data. It is probably caused by the fact that the real
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problem solved can not be considered as linear upon such high velocities so that experimental
results can not be compared to them obtained using linear numerical model. This hypothesis
was confirmed by exploration of the dependence of maximal radial strain on impact velocity.
This dependence was linear approximately up to 30 ms−1 and non-linearity took effect over
this value. It stands to reason that the material model of standard linear viscoelastic solid
with founded parameters can not exactly represent real material properties of polyamide plate
but it can serve as their approximation.

4. CONCLUSION

In this work analytical, numerical and experimental investigation of non-stationary phenomena
in a thin viscoelastic plate was performed. Firstly, the analytical solution was presented, evalu-
ated using Matlab and Maple functions and then compared with results of numerical simulation
(FEM). This procedure serves for verification of numerical model whose basic setting could
be then used for solution of real impact of small glass ball on the surface of polyamide plate.
Owing to the comparison of numerical solution with experimental results, the parameters of
material model were modified so that the resulted numerical model can be used for simulation
of such problems. Additionally, the range of applicability of mentioned model was specified.
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