ANALÝZA VLASTNOSTÍ KÓNICKÉHO PIEZOELEKTRICKÉHO SNÍMAČE AKUSTICKÉ EMISE

> O. Červená, P. Hora Ústav termomechaniky AV ČR, v.v.i.

Příspěvek vznikl na základě podpory projektu GA ČR č. 101/06/1689 *Analýza komponent modelu systému pro metodiku akustické emise* a záměru ÚT AV ČR, v.v.i., AV0Z20760514.

VÝPOČTOVÁ MECHANIKA 2008 / 3. - 5. listopadu 2008

## Úvod

#### Kónický snímač

vysoce citlivé, širokopásmové zařízení (asi od 10 kHz do několika MHz) pro měření vertikální složky výchylky malé plošky povrchu tělesa.



#### Využití

testování pomocí akustické emise, normálový snímač ap.

#### Základní charakteristiky kónického snímače

- Aktivní prvek je z piezoelektrické keramiky, je kónický a polarizován rovnoběžně se svojí osou.
- Podstavy kužele jsou opatřeny napařenou stříbrnou nebo zlatou elektrodou.
- Větší podstava je připájena (případně vodivě přilepena)
   k válcovému zakončovacímu bloku, který je obvykle z mosazi.
- Menší podstava je spojena přes tenkou vazební vrstvu s částí povrchu, na kterém se měří vertikální složka výchylky.
- Výstupní napětí se měří mezi válcovým zakončovacím blokem a povrchem, na kterém je snímač umístěn.
- Výstupní napětí signálu kónického snímače je přímo úměrné normálové výchylce na kontaktní ploše.

## Druhy kónických snímačů



## Jednorozměrná analýza založena na náhradním schématu kónického snímače

Kónický divergentní vlnovod

Odpovídající náhradní schéma





• Porovnání impedančních matic.

Doplnění T–článku Masonovým modelem  $\Rightarrow$ 

#### Náhradní schéma kónického piezoelektrického elementu



Převedení elektrické části na mechanickou, doplnění impedancí zdroje a zatěžovací impedancí  $\Rightarrow$ 

Náhradní schéma kónického snímače



Výpočet frekvenční charakteristiky z geometrických rozměrů, materiálových konstant aktivního prvku a zakončovacích impedancí.

#### Frekvenční odezva založená na 1D analýze



válcový snímač  $r_1 = r_2 = 0,5$  mm, l = 4 mm

kuželový snímač  $r_1 = 0,5$  mm,  $r_2 = 3$  mm, l = 4 mm

zakončovací blok poloměr = 19 mm, výška = 25 mm.

## Analýza metodou konečných prvků

**COMSOL** Multiphysics

- analýza frekvenční odezvy
- analýza časové závislosti
  - aplikační modul: strukturální mechanika
  - aplikační mód: piezo 2D-rotační symetrie
  - prvky: Lagrangeovy kvadratické
  - lineární řešič (UMFPACK)
    - 9 tvarů piezoelektrických prvků
    - 4 velikosti zakončovacích bloků

## Materiály

#### aktivní prvek – keramika PZT

#### matice elastických konstant:

| c =                           | 127,205 | 80,2122  | 84,6702   | 0       | 0        | 0       |         |  |
|-------------------------------|---------|----------|-----------|---------|----------|---------|---------|--|
|                               | 80,2122 | 127,205  | 84,6702   | 0       | 0        | 0       |         |  |
|                               | 84,6702 | 84,6702  | 117,436   | 0       | 0        | 0       | GPa     |  |
|                               | 0       | 0        | 0         | 22,9885 | 0        | 0       |         |  |
|                               | 0       | 0        | 0         | 0       | 22,9885  | 0       |         |  |
| l                             | 0       | 0        | 0         | 0       | 0        | 23,4742 |         |  |
| vazební m                     | natice: |          |           |         |          |         |         |  |
|                               | - 0     | 0        | 0         | 0       | 17,0345  | 0       |         |  |
| e =                           | 0       | 0        | 0         | 17,0345 | <b>0</b> | 0  C/   | $m^2$ , |  |
|                               | 6,62281 | -6,62281 | . 23,2403 | 0       | 0        | 0       |         |  |
| matice elektrických konstant: |         |          |           |         |          |         |         |  |

matice elektrických konstant:

$$\varepsilon_S = \begin{bmatrix} 1704, 4 & 0 & 0 \\ 0 & 1704, 4 & 0 \\ 0 & 0 & 1433, 6 \end{bmatrix},$$

hustota:

$$ho=7500\,{
m kg/m^3}$$

## zakončovací blok – mosaz

Youngův modul  $E=110\,{
m GPa},$ poissonovo číslo u=0,35,hustota  $ho=8700\,{
m kg/m^3}.$ 

## Tvary piezoelektrických prvků

|          | $r_2$ | q   | $\alpha$ |       |
|----------|-------|-----|----------|-------|
| Тур      | [mm]  | [-] | [deg]    |       |
| válec    | I     | 0,5 | 1        | 0,00  |
| kužel 10 | V     | 1,0 | 2        | 7,13  |
| kužel 15 | V     | 1,5 | 3        | 14,04 |
| kužel 20 | V     | 2,0 | 4        | 20,56 |
| kužel 25 | V     | 2,5 | 5        | 26,57 |
| kužel 30 | ▼     | 3,0 | 6        | 32,01 |
| kužel 35 | ▼     | 3,5 | 7        | 36,87 |
| kužel 40 |       | 4,0 | 8        | 41,19 |
| kužel 45 |       | 4,5 | 9        | 45,00 |

Ö Ústav termomechaniky AV ČR, v.v.i.



## Velikosti zakončovacích bloků

| Тур | Výška<br>[mm] | Poloměr<br>[mm] |
|-----|---------------|-----------------|
| A   | 25,0          | 3,0             |
| В   | 25,0          | 11,0            |
| C   | 12,5          | 19,0            |
| D   | 25,0          | 19,0            |





## Okrajové podmínky



mechanické 2 – předepsaná výchylka

elektrické

2 – uzemnění3 – nulový náboj



## Okrajové podmínky

mechanické 2 – předepsaná výchylka

elektrické 2 – uzemnění 3 – nulový náboj

Výstupy

modul výchylky

8

• elektrický potenciál

elektrické napětí 
$$U = rac{2 \pi \int\limits_{0}^{r_2} r V(r) dr}{\pi r_2^2}$$

5

7

4

3

## Frekvenční analýza

• čtyřúhelníková sít - maximální velikost prvku sítě 0,5×0,5 mm

 Rayleighovo tlumení parametr hmotnosti  $\alpha_{dM} = 209440 \, {\rm s}^{-1}$ parametr tuhosti  $\beta_{dK} = 1.06 \cdot 10^{-8} \, {\rm s}$ 

parametrický řešič frekvenční odezvy

- amplituda buzení 1pm
- budící frekvence v rozmezí  $10^4 10^6$  s krokem  $10^4$  Hz
- studována odezva napětí

pro samotné prvky









![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_2.jpeg)

## Analýza časové závislosti

- čtyřúhelníková sít maximální velikost prvku sítě 0,25×0,25 mm
- čas od 0 do 50  $\mu$ s s krokem 0,01  $\mu$ s
  - 2 způsoby buzení
    - funkcí

sinový puls s amplitudou 1 pm, frekvencí 2 MHz a šířkou 0,5  $\mu$ s

 předepsaným souborem vertikální výchylka na poloprostoru ve vzdálenosti 2 cm od bodového silového zdroje (1 N) se skokovým průběhem buzení

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

## Časová odezva snímače při buzení pulsem funkce sinus

![](_page_23_Figure_2.jpeg)

# Frekvenční odezva založená na časové odezvě snímače

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

## Závěr

- Zjednodušená 1D analýza založená na náhradním elektrickém obvodu kónického vlnovodu a Masonovu modelu piezokeramiky.
- 2D MKP analýza (rotační symetrie) systémem COMSOL.
  - Frekvenční charakteristiky a odezvy na pulzní buzení.

## Závěr

- Zjednodušená 1D analýza založená na náhradním elektrickém obvodu kónického vlnovodu a Masonovu modelu piezokeramiky.
- 2D MKP analýza (rotační symetrie) systémem COMSOL.
  - Frekvenční charakteristiky a odezvy na pulzní buzení.

#### Výhled

- 3D MKP analýza systémem COMSOL.
  - Analýza snímače pro měření příčných výchylek.

![](_page_32_Figure_8.jpeg)

![](_page_32_Figure_9.jpeg)

## OBSAH

Úvod

**Jednorozměrná analýza** Frekvenční odezva založená na 1D analýze

Analýza metodou konečných prvků Materiály Tvary piezoelektrických prvků Okrajové podmínky

Frekvenční analýza Vliv tvaru zakončovacího bloku na frekvenční odezvu

#### Analýza časové závislosti

Časová odezva snímače při buzení pulsem funkce sinus Frekvenční odezva založená na časové odezvě snímače Časová odezva při buzení daném souborem