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IDENTIFICATION OF NONLINEAR DAMPING
OF BLADES
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Summary: The paper deals with a problem of finding parameters of material damping
characterized by its logarithmic decrement out of the sampled signal of damped vibrations.
The decrement is expressed in the form of a cubic parabola in stress amplitudes. A method
of the signal processing is described in the paper. The method yields the optimum values of
coefficients of a polynomial approximating the logarithmic decrement.
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1 INTRODUCTION

Reliability of machines is a strict requirement in this time. Only those producers, who are
delivering reliable machines have a chance to sell it in conditions of a hard competition. The
bigger machine, the more strict requirements on its reliability are pronounced. Turbomachines
belong to this class of products.

The most exposed parts of turbomachines are rotating blades. They suffer not only from
corrosion and erosion, but they are also extremely loaded. The character of a stress is rather
complicated. It comes from the transmitted power, centrifugal forces and unsteady operational
conditions. The last one is most dangerous, because it is of varying magnitudes, which may
initiate fatigue damage. Fatigue cracks propagating from critical places of blades are driven by
excessive vibrations caused by turbulent stream of a working media, rapid changes of power put
in the electrical net and by short circuits on the electrical side. While the flow conditions have
to be such that vibrations are low, the other sources could generate transients, which overcome
an effective fatigue limit of the blade material and cause a partial damage. When the situation
repeats, the damage is cumulated until the blade breaks.

2 MATERIAL DAMPING

It is well known that the duration of free transients strongly depends on the damping of
a system under observation.

2.1 Free damped vibration

Let us assume the blade vibrates in a single mode by the frequency ωd = ωo

√
1− b2

p with the
(undamped) natural frequency ωo and a so called relative damping bp of the given mode. In the
critical place of the blade, the motion generates a stress described by the following differential
equation (see [3]):

σ̈(t) + 2 bp ωo σ̇(t) + ω2
o σ(t) = 0 (1)
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Should the system be linear, the stress transients of the blade released from the static position
with the stress σo in the critical place were

σ(t) = σo e (−β ± i)ωd t with β =
bp√
1− b2

p

(2)

Logarithmic decrement ϑ is often used, when describing damping properties of materials. It is
defined as a natural logarithm of two consecutive extremes σaν and σa,ν+1 with the same sign:

ϑ = ln
σν

σν+1
= 2πβ (3)

Unfortunately, experiments have shown that ϑ of a material is not constant, and depends
on the level of amplitude stress σa [1]. Pisarenko has made a proposal of expressing ϑ as a
cubic polynomial of peak stress σa without absolute term [2]. Nevertheless, it is convenient to
complement the absolute term in order to get both a better fit of experimental data, and a linear
damping ϑo. Hence, the general form of nonlinear logarithmic decrement is

ϑ = ϑo + ϑ1 σa + ϑ2 σ2
a + ϑ3 σ3

a (4)

The term ϑo is the amplitude independent component of damping. All coefficients ϑk should be
obtained via an identification from experimental data.

2.2 Identification
The identification consists of four stages

– mathematical model setting,
– measurement of a real process,
– estimation of the model parameters,
– decision on the matching results with the data.

The mathematical model of the logarithmic decrement is determined by eqn (4). The un-
known parameters are the coefficients ϑk.

2.2.1 Measurement
A signal of damped vibration of a blade under observation coming from an accelerometer

or a strain gauge should be sampled and the resulting series of samples belonging to a single
transient processed by a suitable software. The first question is: ”What should be a sampling
rate of the signal”? The answer depends on properties of the measuring system. The higher is
the sampling frequency, the less systematic error occurs in measured extremes. It is well seen
from the table with maximal differences (errors), which may come in the worst case.

fs/fo 2 3 4 6 8 10 12 14 16 18 20

∆% 100 50 29,3 13,4 7,6 4.9 3.4 2,5 1.9 1,5 1,2

It is obvious that the multiple of the natural frequency should be rather high to get acceptable
difference between the extreme values of samples and real peaks.

High sampling rate should not be, in fact, necessary, if a least-squares procedure were applied
to the vector of samples of dimension N . All the procedures need an initial estimate of the model
parameters. If the estimate were very inaccurate, the solution might converge very slowly, or
even diverge. This is the reason, why the parameters should be estimated from peaks of the
damped process by regression in advance. In order to make it, the reliable estimates of peaks
should be known.



2.2.2 Evaluation of extremes
A new formula for estimating extreme values of a harmonic signal from its samples has been

presented in one of the authors’ works [3].

σaν = σk

√√√√√√
σ2

k − σk−1 σk+1

σ2
k −

(
σk−1 + σk+1

2

)2 (5)

The formula is accurate for regularly sampled centered harmonic signals.
There is still another way at disposal, how to estimate peaks of the signal. It is based on an

approximation of the signal near the peak by a quadratic parabola

σ(τ) = a τ2 + b τ + c (6)

After some manipulation, the formula for the peak value becomes

σaν = σk +
1
8

(σk+1 − σk−1)
2σk − σk+1 − σk−1

(7)

The value σk is the middle and largest value out of the triple stresses coming into the formula.
The advantage of evaluating extremes out of samples is in reducing the sampling rate to mini-
mum. The best choice of the sampling frequency is fs = fd/4. The blade is deflected from the
equilibrium position and released during sampling. In this case, every fourth sample is taken
from the vicinity of a peak. Evaluation by means of formula (5) only refines the measured peaks.

2.2.3 Filtration of extremes
Provided the measurement is exact, it is not necessary to make any additional processing

of data. Unfortunately, the data suffer from a measurement noise. In this case it is reasonable
to diminish the noise by a numerical filtration. It is not possible to filter out the noise from
the original time series. Nevertheless, a filter may be applied to the estimated extremes. Sev-
eral filters have been tested with different results. The most simple is a moving average filter
described by the equation

σ̃a,k =

µ∑

κ=−µ

ακ σa,k+κ

µ∑

κ=−µ

ακ

(8)

The filter with five equal weight coefficients

σ̃a,k =
1
5

2∑

κ=−2

σa,k+κ (9)

proved to give the best results.
The filtered extremes may serve for better initial estimation of parameters ϑ. Those are

obtained by means of the polynomial fit of measured data to the function ϑ(σa).

3 SIMULATION

The whole procedure has been tested on the simulated problem of damped free vibration of
a blade possessing the natural frequency fo = 127 [Hz]. The damping properties were gathered
out of the already mentioned source [1] in the form of a table describing points of the logarithmic
decrement ϑ as a function of the stress amplitude σa.

σa [MPa] 0 50 100 150 200 250

ϑ 0.001 0.004 0.006 0.008 0.013 0.0265



3.1 Program description
The simulation program built in MATLAB v. 5.3 / 6 performs the following functions:

a. Finding coefficients of the function ϑ(σa) by regression of the equation (4).
b. Integrating the differential equation (1) starting from the amplitude σo = 250 [MPa] and

zero velocity with the use of the MATLAB procedure ode45 (Runge-Kutta-Fehlberg, 4-5th
order). The time step has been chosen as T = 1/(4fo). In this case, samples are almost
extremes and zeros due to the very low damping. The response has been evaluated for
1000 time steps.

c. Adding random white noise of the normal distribution and a standard deviation of 1%
of the original sample value to the result of integration, creating thus the resulting time
series.

d. Estimating the local maxima in terms of formula (5) out of the noisy time series. In order
to get reduce a noise in data for an initial estimation of the damping coefficients, the series
of extremes has been filtered in accordance with the formula (9).

e. Obtaining the initial estimate for coefficients of the ϑ-polynomial via linear regression of
the filtered extremes.

f. Seeking more precise values of σo and coefficients ϑκ as a least squares solution of an
overdetermined system of nonlinear equations using the MATLAB function lsqcurvefit.
It minimizes Euclidean norm of residual vector in iteration steps. Every step requires to
integrate the nonlinear differential equation (1) transformed into the form

d

dt

[
σ(t)
σ̇(t)

]
=

[
0 , 1

−(2πfo)2 , −2foϑo

] [
σ(t)
σ̇(t)

]
−

[
0

2fo ((ϑ3σa + ϑ2) σa + ϑ1)σa σ̇(t)

]
(10)

There remained one unpleasant problem in the equation (10). It is the occurrence of
instantaneous stress amplitude σa, which is necessary at any moment for evaluating the
function ϑ(σa). Fortunately, σa may be calculated out of both components of the solution
vector in equation (10), which are for small damping σ(t) .= σa cos 2πfot and σ̇(t) .=
−2πfoσa sin 2πfot. It has the form

σa(t)
.=

√
σ2(t) +

[
σ̇(t)
2πfo

]2

(11)

3.2 Results of simulation
Free vibrations of the above mentioned blade have been studied with the use of the just

described MATLAB program. The results of the numerical study are very interesting. They are
gathered in figures 1-4 in graphical and numerical forms for decreasing degree of the polynomial
for approximating ϑ. Figures 1, 2, 3, and 4 contain results of identifications of the logarithmic
decrement ϑ(σa), by cubic, quadratic, linear and constant polynomials in σa, respectively. The
only constant approximation of the logarithmic decrement corresponds to the linear model of
vibrations.

The upper-left plots contain three curves. The first one, with the inflection point, corresponds
to the given logarithmic decrement ϑ(σa) obtained by a polynomial fit to given points. The
second (noisy) curve is a piece-wise linear connection of logarithmic decrement points calculated
out every couple of positive extremes through equation (3). The third line is the result of the
identification procedure.

The upper-right plots show the form of free non-linear response corrupted by the additive
white noise as mentioned above. These plots are identical in every of figures. Note the irregular
form of the envelope introduced by artificial random disturbances.
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Figure 1: Identification of the logarithmic decrement – 3◦ model
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Figure 2: Identification of the logarithmic decrement – 2◦ model
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Figure 3: Identification of the logarithmic decrement – 1◦ model
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Figure 4: Identification of the logarithmic decrement – 0◦ model



The lower-right plots present differences between the identified and the original damped
stresses. They are produced both by the systematic error caused both by differences between
real and identified damping, and a random white noise, which has been added to the sampled
signal. Since the noise was of the normal distribution with the standard deviation 1%, the
samples may be distorted up to 3% of a sample value. The plots prove such a behavior.

The differences in computing times are surprisingly large. They are caused by different
numbers of iterations while solving the ovedetermined system of nonlinear equations for iden-
tification. The number of iterations reached maximum allowed for cases 2 and 3, as seen from
Fig 2 and 3 respectively. Nevertheless, the solutions are closed to the optimal one in both cases.

4 CONCLUSIONS

The solution of the overdetermined system of linear algebraic equations proved to be use-
less, provided the model of damping, the degree of the polynomial for the approximation of
the logarithmic decrement, were exactly as in the reality, say, cubic parabola. In this case, the
regression of the randomly spread filtered values of logarithmic decrement as functions of ampli-
tudes were appropriate. As seen from Fig.1, the solution finished after 12 evaluations of residual
vector returning the initial estimate of all unknowns. On the opposite side, the full number of
iterations was necessary, if the model to be identified, had another structure than the real one.
The long series of iterations occurred very often without reaching the optimum solution within
the maximal number of iterations allowed, in this case.

A linearization of the damping turns up to be rather poor, because it brings extremely high
errors as soon as the original damping is nonlinear. The maximal errors might be diminished, if
minimization of the Chebyshev norm were applied. Nevertheless, they would remain large. The
performed simulation runs hint the following steps for the real experiment on a physical model:
a. Fix a blade, made out of a required material, with a strain-gauge glued on it, in a jaw.
b. Bend it till the required stress is reached, and release it carefully, in order to get a single

mode of vibrations.
c. Sample the signal coming from strain-gauge with the sampling frequency fs = fo/4; fo is

the blade natural frequency obtained in advance.
d. Process the measured time series by the described manner for a cubic model of damping.
e. If coefficients staying by higher powers of σa were negligible, lower the degree of the model

polynomial.
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