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1. Introduction

There are many cases in mechanical engineering, where a structure under observation
is excited by centrifugal forces. The excitation itself is then generated by rotating unbal-
ance masses coming either from random residual eccentricity or from deterministic eccentric
weights in case of inertial actuators. The first case, typical for unbalanced rotors, is the
subject of interest within this contribution.

Collected data contain speed n [rpm] and parameters of vibration, either deviations q(t)
or velocities q̇(t) and or accelerations q̈(t). Let us assume that it is possible to approximate
the rotor by a linear discrete system, and that we measure deviations q(t). There are two
ways of expressing the total information on vibration. Both describe the deviations as
complex numbers

q = Re q + i Im q or q = | q | eiϕ with ϕ = arctg
Im q
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Figure 1: Normalized amplitudes of vibrations of a bearing housing during run-down of a machine

Usually, critical speeds are estimated from the peaks of plotted resonance curves, which
are courses of amplitudes of vibrations | q(p) | as functions of speed. This approach possesses
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many drawbacks consisting in poor accuracy of both frequency and damping estimates. It
is seen from figure 1 that the estimation of critical speeds is difficult, if they are gathered
in clusters. The contribution shows how to reach better estimates of both quantities from
vibration measurements at a single point of a machine without any knowledge of exciting
forces.

2. Theory

The motion of a discrete linear mechanical system with many degrees of freedom
behaves under the equation

M q̈(t) + B q̇(t) + K q(t) = f(t) (1)

It has been described elsewhere (see [2]) that the Fourier transform of a general response
q(t) of the system excited by a general set of forces f(t) takes for p = iω = i2πf the form

q(p) = G(p) f(p) (2)

with a matrix of frequency responses

G(p) =
[
p2 M + p B + K

]−1

= V q [ p I − S ]−1 W H
q (3)

Matrices V q and Wq are built out of deviation parts of modal matrices which are composed
out of left and right eigenvectors respectively. Matrix S is a diagonal spectral matrix of the
problem possessing eigenvalues, scaled critical speeds, of the system under observation.

As soon as the excitation is generated by unbalanced masses rotating with pk, the
Fourier transforms of forces and corresponding responses are

f(pk) = −p2
k δ(p− pk) u and q(pk) δ(p− pk) , (4)

respectively. The symbol δ(p − pk) is the Dirac impuls in the frequency domain at pk. A
complex unbalance vector u is composed of static moments mj rj of unbalanced masses mj.
Hence, the equation (2) may be rewritten with the use of equations (3) and (4) into the form

q(p) = −V q

[
p2 (p I − S)−1

]
W H

q u (5)

Should the matrices S, V q, Wq and a distribution of unbalances u along the rotor be known,
the responses q(p) might be obtained for every p. However, this is not the case as usual.
The matrices S, V q, Wq are unknown and could be obtained out of measured responses
qj(p) and corresponding known set of unbalances uj.

Another situation raises up, when there are only one initial unknown unbalance vector
u and vector of measured responses q(p) for different speeds at disposal. An unbalanced
rotor may be considered as a single input system, because the unbalances u remain constant.
Should the rotor be equipped by a set of pickups for measuring its movement, the whole
system might be considered as a Single-Input-Multiple-Output one (SIMO system).

The identification of the rotor as a SIMO system may not be performed in one step
because of the strong sensitivity of the identification proces to the measuring noise. At first,
it is necessary to filter out all noise at every single point of measurement. It may be done
by processing data belonging to that point via identification a SISO (Single-Input-Single-
Output) system. This first step of identification plays very important role in the process.
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It excerpts the basic properties of the system and serves as a “modal filter”. This simpler
identifications yields eigenvalues of the system observable at the measuring point.

For the purpose, the i-th element qi(p) of the deviation vector q(p) is possible to
express from equation (5) as

qi(p) = −∑
ν

p2

p− sν

{vT
i }ν

{W H
q u}

ν
(6)

The expressions {vT
i }ν

and {W H
q u}

ν
denote scalars, the ν-th elements of the vectors vT , a

row of the matrix V q, and the column vector W H
q u , respectively. The negative product of

both scalars is a scalar aiν . Thus we are faced the nonlinear problem of finding the unknowns
aiν and sν out of a set of observations taken at frequencies pk

qi(pk) =
∑
ν

aiν p2
k

pk − sν

(7)

A procedure, similar to that described in [1], may be used for solving the problem. In order
to diminish an influence of modes not included to the identification, it is possible to introduce
a correction to qi(pk). If it were linear in p, the form of corrected qi(pk) would be

qi(pk) =
∑
ν

aiν p2
k

pk − sν

+ h1 + h2 pk (8)

The quantities h1 and h2 are new unknown complex coefficients to be determined during
the identification process. It is based on the Newton-Raphson optimization method for
minimizing a sum of squares of residuals S = rHr, where the k-th residual is a difference
between the approximation qi(pk) and measured qmi(pk)

rk =
∑
ν

aiν p2
k

pk − sν

+ h1 + h2 pk − qmi(pk) (9)

The method solves the problem in iterations. The result is updated in the step ` due to the
formula

x
(`+1)
i = x

(`)
i −

[
J (`)

]+
r(`) (10)

The vector of unknowns xi is composed out of sub-vectors of eigenvalues s = [ sν ], sensitiv-
ities ai = [ aiν ] and coefficients of corrections h = [ h1, h2]

T , creating thus a column vector
of unknowns xT

i = [ sT , aT
i , hT ] . Hence, the Jacobi matrix J = ∂S/∂x has the form

J =

[
∂S

∂s
,

∂S

∂a
,

∂S

∂h

]
= [ A2, A1, 1, p ] , (11)

where 1 is a column vector of all ones. The submatrices Aj have, for row index k of
frequencies and column index ν of modes, the form

A1 =




...

· · · p2
k

pk − sν

· · ·
...




and A2 =




...

· · · aν p2
k

(pk − sν)2
· · ·

...




. (12)
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3. Programming and test results

The program for solving the given problem has been built in the programming language
MATLAB, which enables to solve dynamical problems rather efficiently. The program is
composed out of following modules – M-functions:

critspeed main driver, for I/O and calling working procedures
idecrit identification procedure calling MATLAB Optimization Toolbox func-

tion lsqnonlin performing Newton-Raphson algorithm for minimizing goal
function S(x),

peaks function for finding peaks of resonance curves | y(p) | necessary for initial
estimate of critical speeds of a rotor

funJ function, required by lsqnonlin, providing a vector of weighted residuals
and the Jacobi matrix J

qp function for evaluating q(p) for arbitrary p using known s, a, h
tick function for drawing ticks along speed axis in places of critical speeds

rpm Re q Im q
628 2.0 -7.5
672 5.0 -20.5
675 3.8 -29.0
680 -10.5 -39.0
692 -24.5 -31.0
697 -24.5 -21.5
777 -19.5 -13.0
836 -18.0 -5.0
876 -26.0 3.5
946 -39.0 11.5
953 -47.0 23.0
962 -43.0 33.0
969 -43.5 42.0
977 -36.0 55.0
999 18.0 63.0

1005 27.0 51.0
1009 29.0 39.0
1012 23.0 26.0
1022 1.0 14.5
1028 -14.0 19.0
1032 -21.0 31.0
1036 -21.0 41.0
1042 -19.0 51.0
1046 -21.0 63.0
1050 -7.5 80.0
1052 1.5 85.0
1056 28.0 92.0
1062 43.0 85.0
1072 58.5 71.0
1075 64.0 57.0
1076 71.0 45.0
1078 69.0 35.0
1083 62.0 22.0
1095 50.0 12.0
1330 10.0 -5.0
2310 23.0 5.0
2360 43.0 0.0
2440 47.0 -8.0
2478 52.0 -18.0
2522 52.0 -26.0
2535 47.0 -34.0
2614 41.0 -42.0
2659 40.0 -51.0
2691 36.0 -58.0
2808 12.5 -67.0
2857 1.0 -77.0
2871 -5.0 -80.0
2953 -33.0 -71.0
2983 -38.0 -61.0
3000 -42.0 -53.0

The program is interactive. A user may choose certain parame-
ters, which influence tasks and their solution. The measurement comes
in the form of an ASCII-file, the name of which is input by the user
from a keyboard. The file is filled by a table containing arbitrary num-
ber of rows composed of triples of real numbers, speed in revolutions
per minute and real and imaginary parts of the measured response of
the rotor at a measuring point (see right). The input values of vibra-
tions q(p) are normalized to y(p) the maximum amplitude of which
equals one. These were plotted in figure 1 as points. The continu-
ous line shows the identified response of the machine at the point of
measurement.

The user may change default uniform weights of measurements
into arbitrary function of frequency just like a setting of initial esti-
mates of critical speeds rather simply. They may be found automat-
ically as the speeds corresponding to peaks of the response, or input
manually from the keyboard.

A problem of identification eigenvalues is solved in two levels.
At the beginning, the initial estimates of s and a are sought by a
method described in literature [2]. As soon as they are known, the
lsqnonlin function is called, which minimizes sum of squares of residuals
using function funJ which supplies residuals and Jacobi matrix. The
optimization procedure yields the optimal values of natural frequencies
s and their intensities a at the point of observation and correcting
factors h. Simultaneously, the identified normalized response is output.

The output quantities serve for calculations of the relative damp-
ings and Q-factors for every mode, critical speed, using formulae

bpν =
−Re sν

| sν | , Qν =
1

2 bpν

(13)

These values are very important, because they inform the user on the
degree of danger of the particular critical speed.
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The results are both numerical and graphical and have the forms:

==================================================
Critical speed identification 06-Aug-2001

==================================================

file = Test.dat =>
weight = ones(size(f)) =>

use peaks = yes => n
f peaks = [] => [685,1000,1050,2400,2900]

Initial estimates of frequencies

f( 1) = 11.333 [Hz] = 680.0 [ot/min]
f( 2) = 16.650 [Hz] = 999.0 [ot/min]
f( 3) = 17.500 [Hz] = 1050.0 [ot/min]
f( 4) = 39.333 [Hz] = 2360.0 [ot/min]
f( 5) = 47.850 [Hz] = 2871.0 [ot/min]

Frequencies found by optimization

mode Re n -Im n bp Q alpha

1 681.4 13.0 0.0191 26.21 -175.1
2 998.6 19.9 0.0199 25.11 -42.3
3 1055.1 22.2 0.0210 23.78 4.5
4 2458.3 214.5 0.0869 5.75 -83.7
5 2897.0 147.8 0.0509 9.81 98.5
6 2945.4 136.5 0.0463 10.80 178.4

==================================================
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Figure 2: a. Normalized bearing vibrations due to an unknown unbalance
b. Modal components of normalized bearing vibrations
o - measured, x - identified, ∗ - eigenvalues; y = | q |/max | q |
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The figure 1 is also one of outputs of the programm run. The figure 2a contains both
points of measured normalized vibrations marked by circles and connected by straight lines,
and identified course plotted by a smooth line. The points of critical speeds are plotted for
ων = Re sν , numbered and marked by asterisks.

The decompositions of the total normalized response into its modal components is
shown in the figure 2b for the whole interval of running speeds. The points of the critical
speeds are again marked by asterisks. They also denote angles of 90◦ phases with respect to
the phase-shift sensor. Angular positions of modal counterweights are again by 90◦ shifted
with respect to 90◦ phase positions. The angles of counterweight modal planes are printed
as last columns in the table of numerical results.

4. Conclusions

The presented method of identification critical speeds out of data obtained by mea-
surement of vibration parameters as functions of rotor speed proved to be effective. It is
applicable for precise estimation of critical speeds, dampings and positions of modal com-
ponents of unbalances out of measurement taken in a single point of a machine, which is
excited by unknown unbalance. The measurement point should be selected as a such one,
which gives maximum information on dynamic properties of the rotor.

The measured response is possible to decompose into modal responses. The phase
angles corresponding the points of eigenvalues on the modal responses serve for estimating
the planes of modal unbalances, a knowledge of which may accelerate a balancing procedure.

More information could be obtained by simultaneous measurements in more points of
the rotor. The present method could be used as a starting one for SIMO identification by a
more complicated method similar to that presented in [2].
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IDENTIFICATION OF CRITICAL SPEEDS USING UNBALANCE RESPONSE DATA

A new method of the identification critical speeds out of noisy measurements of rotor
responses to an unknown unbalance is described. The identification procedure is based on
the fitting experimental data by a response of a Single-Input Single-Output (SISO) system.
The method yields natural frequencies with dampings of the rotor out of data measured at a
certain point of a machine. The result may serve to estimating planes of modal components
of an unbalance. The SISO system identification has been implemented in MATLAB.


