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Abstract

A problem of fatigue cracks is very important. The paper deals with
estimating an amount of damage caused by varying generalized forces in
vibrating rotors. An approach to optimization of rotors with guaranteed
fatigue life is briefly discussed.

Nomenclature

β ”effective” stress concentration factor
cx, cy exponents of regression functions
C matrix of regression coefficients
d smaller diameter in a notch
di elementar damage caused by one closed cycle
D bigger diameter nearby a notch
Do total damage raised within time of observation To

E Young’s modulus
f(p) criterion (goal) function to be optimized
ϕ phase angle
G shear modulus
g(p) vector of inequality constraints
h(p) vector of equality constraints
L(p) service life of a rotor
J quadratic moment of a cross-section
kd service life coefficient
kq surface quality factor
kV part size factor
Kt stress concentration factor



M moment
N number of harmonic cycles to fracture
p vector of design parameters
% radius of a notch
Rm strength of a material
s stress σ or τ
sa, sm amplitude and mean stress respectively
t time
To time of observation
v, w vertical and horizontal deflections
ξ (D − d)/D, relative narrowing of a size in a notch
η %/D, relative radius of a notch
x, y vectors of regression functions

1. Introduction

Rotors running in real bearings exhibit rather complicated spatial
movement, when rotating, what was shown already many years ago (see
[1], [2]). A numerical analysis of such problem gives a solution, which con-
taines not only deformations, but also their derivatives. It is quite easy to
evaluate courses of bending and shear stresses along a shaft with the use
of the solution, material modulus and a diameter. The stresses and their
variations in time may serve for a damage estimation, which they caused.

2. Causes of fatigue crack initiation

Stress varying in time may exhaust a resistance of the rotor mate-
rial against damage, and generate microscopic plastic deformations in the
vicinity of material imperfections. In such disturbed area, microcracks may
be initiated, which may come to a macrocrack by mutual interconnections.
Provided the macrocrack is propagating, it becomes dangerous. This is the
reason why the problem of its identification is pursued both in literature and
conferences. Hence, it is important to know the causes of the fatigue crack
initiation in rotors, and to design rotors with the minimized danger of those
cracks, at least in the guaranteed period of their service lifes.

Locations of cracks may not be stated in forward with the full certainty.
However, they are as usual in places with highest dynamic stresses, so-called



critical points. Those are locations with serious material imperfections, and
places possessing severe geometrical changes of a cross-sections of a shaft
like in grooves and shoulders. A critical point may also lay at the edge of a
shrunk-on wheel or a flange coupling.

Even that rotors are loaded by a combined stress, it is quite general
that one component of a complex stress is dominant. For sake of simplicity,
it is convenient to investigate different types of dynamic stresses separately.

2.1. Bending of shafts

A bending stress is generated by an arbitrary lateral shaft deflection.
The reason of the deflection are generalized forces. Provided the forces are
rotating in a fixed space with a frequency ωf , and the rotor with ωr, a stress
they cause on a surface of the rotor rotates with the relative frequency

ωσ = ωf − ωr (2.1)

or its multiple. The forces may have a different character:

2.1.1 Forces fixed in space

All forces comming from gravitation, partial admission of steam, mag-
netic fields, and forces acting in tooth-, belt- and chain transmissions belong
to this group. If they are constant, they produce a stress traveling round a
circumference of the shaft. The frequency of changes in every point of the
surface is ωσ = 0 − ωr = −ωr. The nominal quantity of the stress on the
shaft surface is

σ(x) =
32 Mb(x)
π d3(x)

= −32 E J(x)
π d3(x)

∂2y

∂x2
(2.2)

where y(x) is the maximum deflection of the shaft in a distance x from
an origin. The forces might initiate a circumferential crack propagating
from the surface of the isotropic shaft to its center. Its identification out of
measured data would be rather difficult, since it does not generate changes
in twice-per-revolution component of vibrations. This does not hold for
nonisotropic rotor. The forces might generate one crack or a couple of oposite
cracks, which would be identifiable out of vibration data containing a 2ωr

component.



2.1.2 Out of balance forces

In this case of deterministic excitation, the frequency of unbalanced
forces is ωf = ωr, and hence the resulting frequency of a stress equals zero
due to equation (2.1). The forces would cause a static rotor deflection ro-
tating by the equal frequency with the rotor. However, this situation takes
place only in case of isotropic bearings, when a trajectory of any point of the
rotor axis is circular. If the rotor is carried by general anisotropic bearings,
the trajectories are no more circles.
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Let a point of the rotor axis vibrates in a lateral plane. The plane is
defined by real vertical axis rv, and horizontal axis rw. Let amplitudes and
phases of the vibration be |v|, ϕv and |w|, ϕw respectively. The coordinates
of a point of the trajectory
[

rv
rw

]
= Re

[ |v| eiϕv

|w| eiϕw

]
eiωt

=
[ |v| cos(ωrt + ϕv)
|w| cos(ωrt + ϕw)

]
(2.3)

are yielding the instantaneous distance of the trajectory from the equilibrium
point

y =
√

rv2 + rw2 (2.4)

The equation of the trajectory may be easily derived from the equation (2.4)
in the form
(

rv

|v|
)2

− 2
rv

|v|
rw

|w| cos∆ϕ +
(

rw

|w|
)2

= sin2∆ϕ , (2.5)



where ∆ϕ = ϕv − ϕw. The equation (2.5) is a quadratic form (see [3])
expressing an ellipse with skewed axes. An analysis of the quadratic form
gives formula for lengths of ellipse half-axes

aj =
∣∣∣∣
sin ∆ϕ√

cj

∣∣∣∣ , j = 1, 2 , (2.6)

where

cj =
1
2

(
1
|v|2 +

1
|w|2

) 

1±

[
1− 4 sin2 ∆ϕ(∣∣ v

w

∣∣ +
∣∣w

v

∣∣)2

] 1
2



 (2.7)

The angle of the first axis is

α1 = arctan
1− |v|2c1∣∣ v
w

∣∣ cos∆ϕ
(2.8)

It may be proved that the point circulates on the trajectory with the same
sign as ω, if sin ∆ϕ were positive. Hence, the ellipse degenerates into a single
straight-line segment for ∆ϕ = 0, or π.

Changes of stress depend on changes of shaft deformation. Frequency
of the changes is now ωσ = 2 ωr, since two minima and two maxima occur
during one turn of the trajectory. A quantity of nominal stress changes
may be determined through the same formula (2.2), since bending moments
depend on shaft deformations under the same law.

A crack initiation might be expected only in case of extra high levels of
shaft vibration. The crack would propagate from one point on the surface of
the rotor. It might be well identified out of twice-per-revolution component
of vibrations.

2.1.3 The other forces

The group of these forces is composed of forces generated by oil-film,
steam and other media, and similar, when operating in a range of self-excited
vibrations or in chaos regime. They generate complex deformations, and con-
senquently even stresses. Only in case of harmonic vibration, the frequency
of stress variations in certain point is given by formula (2.1). Their values
should be either measured or guessed basing on the assumption of shaft de-
flections exhausting all the bearing clearences. Should a crack be initiated,
it would have concentric shape. An identification of it would be difficult.



2.2. Torsion of shafts

It is well known that nominal torsional stress reaches its highest values
on a surface of the shaft

τ(x) =
16 Mt(x)
π d3(x)

= − GJp(x)
π d3(x)

∂αx

∂x
(2.9)

Changes of the stress are slow if loading of the machine varies slowly.
A different situation takes place, if the load changes suddenly. At that time,
inertial masses influence a twist αx of the shaft, which starts to vibrate.
Transitions in the form of free torsional vibration take place, when the load
is switched off. Much stronger torsional vibration is generated during a short
circuit on generator terminals. The vibration is excited by a short-circuit
torque. Its course is complicated, and depends both on intensity of the
torque and on dynamic properties of the turboset rotors.

A crack, which might be initiated by this type of loading, has a con-
centric shape. It propagates from the surface toward the center of a shaft.
Its identification is difficult.

3. A damage and its cumulation

Fatigue cracks generated in large rotors by varying stress are very
dangerous. Hence, it is necessary to have both tools for estimating an amount
of a damage caused by known time functions of a stress, and a collection
of material data containing values of critical amplitudes of a stress as a
function of a mean stress sm, scm = sc(sm), and corresponding number of
harmonic cycles Ncm = Nc(sm). Symbol s substitutes both normal stress
σ and tangential stress τ . Note that sc0 = sc(0) = sc is a standard fatigue
limit of the material, and Nc0 = Nc(0) = Nc a corresponding number of
cycles to a fracture.

3.1. Generalized Haigh’s plot

The function sc(sm) is well known as Haigh’s plot, which gives the
information on critical amplitudes of stress as a function of the mean stress.



.............................
t

............
................. s

a

0
..........................
...

............
.................
..........................
...

............
.................

sm

sa

............
.............
............
............
............
.............
.............
................
..........................................................................................................................................................................................................................................................

.............
.............
............
............
............
.............
............
.....

b

.............................
sm

............
................. nscm





0 sm sF

nsc =
sc
nβ

sc = 0sc0

nscm

scm = 0scm

q

q

q

q

standard
specimen

.............
.............
.............
.............
.............
.............
...

notched
specimen

Figure 3-2: Harmonic stress cycle (a) and generalized Haigh’s plot (b)

Let us denote a critical amplitude sa of a nominal stress variation about
a mean stress sm in a notch as

n

scm where superscript n denotes the type of
the notch and a loading. There are many formulae, which approximate the
function

n

scm in the literature. Let it hold for a general curve of the plot

n

scm =
sc
nβ

(
1− sm

sF

)kH

=
scm
nβ

(3.1)

The coefficient
n

β =
scm

nscm
is an effective stress concentration factor of a

given notch, a kind of loading, and a material of the specimen. There are
two more material constants in the formula, kH and sF . The later one used
to be expressed as a multiple of a material strength Rm.

The coefficient
n

β of a rotor is either obtained experimentally, or es-
timated out of a theoretical stress concentration factor Kt as a function
n

β =
n

β(
n

Kt, kV , kq) in the form

n

β =
β (

n

Kt)
kV kq

, (3.2)

where kV is a coefficient depending on a volume of the material near by crack,
and kq is a coefficient which takes into account a quality of the surface. There
is a plenty of formulae for an effective stress concentration factor β (

n

Kt).
Neuber’s formula [4] is

β (
n

Kt) = 1 +
n

Kt − 1

1 +
√

A
%

(3.3)

where A(Rm) [mm ] is Neuber’s coefficient dependent on the strength Rm

expressing a size of material grains, and % [mm ] is a radius of curvature in



the notch root. The following formula may serve for practical purposes:
√

A = 289.1/Rm − 0.1217 (3.4)

3.2. Theoretical stress concentration factor

The theoretical stress concentration factor
n

Kt(ξ, η) depends on a form
of a notch, kinds of a loading, a relative narrowing ξ of a size by the notch,
and its relative sharpness η, where

ξ =
D − d

D
, x = ξ

n
cx and η =

%

D
, y = η

n
cy (3.5)

The theoretical stress concentration factor
n

Kt may be approximated by the
bilinear form
n

Kt = 1 + xT
K

n

CK y
K

, (3.6)

where

x
K

= [ p1(x), p2(x), ..., p5(x) ]T ,

y
K

=
[
y−2, y−3, y−4, y−5

]T
,

n

CK ∈ R5,4

(3.7)

The elements of the vextor xK are values of orthogonal polynomials
with roots at the ends of the interval x ∈ 〈 0, 1 〉. Their coefficients are
presented in the Tab. 3-1:

n p1(x) p2(x) p3(x) p4(x) p5(x) p6(x)

7 0 0 0 0 0 95.3333

6 0 0 0 0 -33.0000 -333.6667

5 0 0 0 12.0000 99.0000 458.3333

4 0 0 -4.6667 -30.0000 -111.0000 -311.6667

3 0 2.0000 9.3333 26.0000 57.0000 108.3333

2 -1.0000 -3.0000 -5.6667 -9.0000 -13.0000 -17.6667

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0 0 0 0 0 0 0

Table 3-1: Coefficients of orthogonal polynomials



The matrix
n

C
K

and coefficients
n

cx and
n

cy were found by minimizing
the maximum absolute value of a difference of the formula (3.6) from exact
values of

n

Kt, which have been published in [5] – [7] for 17 different types of
notches and kinds of loads. In the following table, there are the necessary
data for types n, which are relevant for rotors.

n type max|εij | [%]
RVB Round – V-notch – Bending 0.4
RVT Round – V-notch – Torsion 0.5
RSB Round – Shoulder – Bending 0.9
RST Round – Shoulder – Torsion 0.3

The next structure contains data, which are arranged in the following way:

n

Cij =




n

C
K
∈ R5,4

n

cx
n

cy ξmin ξmax

max |εij | RMS (εij) ηmin ηmax


 (3.8)

Cij=[...

% RVB (Round, V-notch, Bending)

-0.9546 1.7172 -0.3811 0.0290

-0.6711 1.9695 -0.9084 0.1291

1.2226 -0.9075 0.3545 -0.0370

1.2147 -1.0873 0.3996 -0.0577

0.6010 -0.4576 0.1057 0.0017

0.6395 0.2480 0.0200 0.9000

0.4110 0.2253 0.0150 0.5000

% RVT (Round, V-notch, Torque)

-0.5424 0.7371 0.0546 -0.0347

-0.5394 1.2792 -0.5787 0.0848

0.7658 -0.8293 0.4064 -0.0473

-0.1544 0.7249 -0.4469 0.0733

-0.0410 0.4526 -0.3409 0.0772

0.6601 0.2098 0.0200 0.9000

0.4909 0.2172 0.0100 0.5000

% RSB (Round, shoulder, Bending)

0.3990 -0.0233 -0.0051 0.0006

0.5843 -0.2283 0.0340 -0.0018

0.6924 -0.3829 0.0754 -0.0048

0.1309 -0.0159 -0.0049 0.0006

-0.1014 0.1382 -0.0344 0.0025

0.6785 0.4655 0.0500 0.9000

0.9300 0.3981 0.0150 0.5000

% RST (Round, shoulder, Torque)

5.7744 -13.9186 10.1701 -1.8458

-5.6001 11.5741 -7.3316 1.5014

-5.0089 13.3690 -11.6788 3.4447

-3.0636 6.2668 -3.6547 0.5428

14.1124 -30.7907 21.8907 -5.0485

0.6322 0.1044 0.0500 0.9000

0.3078 0.1049 0.0150 0.5000]

3.3. A damage estimation

A relative damage of the rotor may be estimated under a series of hy-
potheses. The hypothesis of linear cumulation of the damage due to Palm-
gren - Miner has proved to be appropriate, when applied to full stress cycles,



which correspond to closed hysteretic loops in the stress-strain plot. For the
purpose, the time histories of stress records or recalculated to critical points
are analyzed by the multichannel ”rain-flow” method, which decomposes
complex signals into closed cycles (see [8], [9]).

An elementar relative damage of round specimen may be determined
using the equation of an Whler’s (S-N) curve

Na

Nc
=

(
sc

sa

)w

(3.9)

After generalization of this equation for critical point of the rotor with a
concentrator, i-th full stress cycle of a nominal amplitude sai and mean
stress smi will cause a damage

n

di =
1

nNai
=

1
nN c

(
sai

nscmi

)n
w

(3.10)

The total relative damage caused during a time of observation To should be

n

Do =
∑

i

n

di ≤ kd (3.11)

for save run of a machine. If the loading process be a characteristic sequence,
the service life of the rotor would be

n

L = kd
To

nDo
, (3.12)

where the coefficient kd equals 1, provided that the law of linear cumulation
of damage holds exactly. Otherwise, its value should be found by experiment.

4. Optimization of a rotor design

There are many possibilities how to optimize the design of the rotor. The
following approach comprises several points of view on the optimality. The
rotor design may be declared as optimum one, if it fulfils all guaranteed
properties and is cheapest. It is difficult to build a criterion function based
on the product price. However, the price is strongly dependent on the mass
of the rotor. Hence, the criterion function may be just a mass of the rotor
mr. The guaranteed service life LG of the rotor and other technological
requirements may be formulated as constraints. Then the problem sounds



minimize f(p) = mr(p)
by constraints L(p) ≥ kd LG(p)

g(p) ≥ 0
h(p) = 0

(4.1)

Vector p contains a set of optimization parameters. It is clear that the
requirement concerning the service life L(p) is only a special constraint of
the inequality type g(p).

It is neccessary to investigate a set of critical points during optimiza-
tion, because the optimization process may change the location of the most
critical place. This requires an application of the multichannel version of the
rain-flow method (see [10]), and an optimization procedure for minimizing
nonsmooth goal functions.

5. Conclusions

Prediction of a damage cumulation is rather delicate procedure just like
a consequential prediction of a service life of the rotor. High indeterminacy
of the result is a consequence of large variances of material properties and
other technological quantities, inexact knowledge of the excitation, and a
simplification of multiaxial stress into uniaxial one. If the later assumption
were false, the problem would become of an order more complicated and not
solved to full satisfaction yet. However, the presented approach may serve as
the first attempt to design reliable rotors optimal both in price and service.

It has to be stressed out that the described approach links up dynamics
of rotors, their reliability, and the minimum costs of a product into the unique
process. Optimization procedure applied to mass criterion tends to reduce
of rotor diameters, what changes both dynamic properties and resistence
against fatigue crack initiation in critical points, which may alternate during
optimization. A set of constraints ensures that the final design fulfils all
requirements, guaranteed service life as well. Presented formulae allow to
include stress concentration factors and evaluation of the rotor fatigue life
in the optimization process.

The similar approach may be chosen even for blading. If a mesurement
system were installed on a turboset for monitoring blade vibrations, the
detailed analysis of measured data could give valuable information on a
residual length of the service life.
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